GHI Installation Guide
Spectrum Scale - HPSS Interface, version 3.4.0.0.0, 09 June 2023
Table of Contents

1. Preparing for GHI install ... v
 1.1. Prerequisites ... 1
 1.2. Operating system ... 2
 1.3. Memcached ... 3
 1.4. GHI-ISHTAR ... 4
 1.5. Install GHI-ISHTAR .. 5
2. Spectrum Scale ... 6
 2.1. Install Spectrum Scale ... 6
 2.2. Configure Spectrum Scale ... 6
 2.3. Create SSH trust .. 7
 2.4. Create a new Spectrum Scale cluster 7
3. Db2 ... 13
 3.1. Users and groups .. 13
 3.2. Add hpssdmg to HPSS ACL on Core Server 15
 3.3. Set up GHI tablespace on the HPSS Core Server 15
 3.4. Install Db2 client on all GHI nodes 19
 3.5. Add Db2 permanent licenses on all GHI nodes 19
4. HPSS ... 22
 4.1. Verify HPSS RPMs on all GHI nodes 22
 4.2. Configure the HPSS client ... 22
5. GHI installation and configuration .. 23
 5.1. Install GHI ... 23
 5.2. GHI users and groups ... 24
 5.3. Configure GHI ... 24
 5.4. Create the GHI cluster .. 25
 5.5. Create the Spectrum Scale file systems GHI will manage 25
 5.6. Create IOMs for each GHI-managed file system 26
 5.7. Modify the xinetd.conf file for the number of IOMs 27
 5.8. Information Lifecycle Management (ILM) policies 27
6. Backup and restore .. 29
 6.1. Backups ... 29
 6.2. Restore ... 30
7. GHI conversions ... 31
 7.1. Converting from 3.1.0 to 3.2.0 31
 7.2. Converting from 3.0.1 to 3.1.0 31
 7.3. Converting from 3.0.0 to 3.0.1 34
 7.4. Converting from 3.1 to 3.2 .. 37
A. Glossary of terms and acronyms .. 40
List of Tables

3.1. LOGBUFSZ ... 18
Angle brackets ("<>") denote a required argument for a command:

% sample command <argument>

Square brackets ("[]") denote an optional argument for a command:

% sample command [optional argument]

Vertical bars ("|") denote different choices within an argument:

% sample command <argument1 | argument2>

Commands written within the sentence will be bolded:

Sample sentence with a command in it.

A byte is an eight-bit data octet.
A kilobyte, KB, is 1024 bytes (2^{10} bytes).
A megabyte, MB, is 1,048,576 bytes (2^{20} bytes).
A gigabyte, GB, is 1,073,741,824 bytes (2^{30} bytes).
A terabyte, TB, is 1,099,511,627,776 bytes (2^{40} bytes).
A petabyte, PB, is 1,125,899,906,842,624 bytes (2^{50} bytes).
An exabyte, EB, is 1,152,921,504,606,846,976 bytes (2^{60} bytes).
Chapter 1. Preparing for GHI install

Prior to installing GHI, ensure you understand the customer’s requirements, which will help you properly size and configure the GHI system. This installation guide does not document site planning processes; that is part of the proposal or system engineering phase of the project. In addition, refer to the *GHI Management Guide* for planning considerations.

IBM recommends installing GHI on a Spectrum Scale cluster that has no other Hierarchical Storage Management (HSM) application running, for example, Tivoli Storage Manager (TSM). If another HSM-managed file system is required, it must run on a separate cluster and be remotely mounted on the GHI-managed cluster. GHI is dependent on timely Data Management Application Programming Interface (DMAPI) events from Spectrum Scale; therefore, there should not be two applications competing for events.

For systems installed with High Availability (HA) Core Server, it is critical to ensure that the required GHI components are installed on the backup or stand-by Core Server. These components include Db2 accounts creation and configuration, Db2 server configuration and Independent Standalone HPSS TAR (ISHTAR).

GHI installation requires root or root-equivalent privileges, except where noted otherwise.

1.1. Prerequisites

Before installing GHI, review the GHI release notes on the HPSS Admin wiki for prerequisites, special notes, and possible known issues for the version you plan to install. The release notes define the software version of each prerequisite software:

- HPSS Core Server and Movers
- Operating system
 - memcached
 - libmemcache
 - rpcbind
 - xmlrpc-c
 - xmlrpc-c-client
 - xinetd
- Python – not covered in this document
- IBM_db (Python support for Db2) – not covered in this document
- Spectrum Scale
Preparing for GHI install

- Db2 client
- HPSS client
 - hpss-lib
 - hpss-lib-devel
- GHI-ISHTAR
- GHI

Note

Newer versions of tar (RHEL8+), enable the --sparse option by default. Extractions with the --sparse option do not trigger DMAPI read events in GPFS. This can cause tar extraction to silently fail.

Do not allow the use of tar --sparse when using GPFS with GHI.

As a workaround, use tar --hole-detection=raw.

1.2. Operating system

1.2.1. Set ulimits

Note

Change the default soft and hard core size from "0" to "unlimited". This will allow GHI to create a core dump file for debugging purposes. The default inode scan bucket size is 1000. Increase the max open file descriptors limit to 65536 in `/etc/security/limits.d/19-hpss.conf` on all systems that will run GHI. Reboot each node to validate each change is correct and persistent.

Example:

```
% vi /etc/security/limits.d/19-hpss.conf

* soft core 0
* hard rss 10000
@student hard nproc 20
@faculty soft nproc 20
@faculty hard nproc 50
ftp hard nproc 0
@student - maxlogins 4
* soft core unlimited <- (add)
* hard core unlimited <- (add)
* softnofile 65536 <- (add)
* hardnofile 65536 <- (add)
```

Validate each change by running:

```
$ ulimit -a
```
1.2.2. Configuration of rsyslog

Note

IBM recommends that you suppress repeat messages and turn rate limiting off.

Sites must evaluate policies and configuration needs for their own systems and determine what works best. Below is an example:

1. In `/etc/rsyslog.conf` update or add the following lines:

```
$SystemLogRateLimitInterval 0
$SystemLogRateLimitBurst 0
$IMUXSockRateLimitInterval 0
$IMJournalRateLimitInterval 0
$IMJournalRateLimitBurst 0
```

2. In `/etc/systemd/journald.conf` update or add the following lines:

```
RateLimitInterval=0
RateLimitBurst=0
Storage=volatile
Compress=no
MaxRetentionSec=5s
```

3. In `/etc/rsyslog.d/hpss.conf` update or add the following line:

```
$RepeatedMsgReduction off
```

4. Restart the services for changes to take effect

```systemctl restart systemd-journald
systemctl restart rsyslog```

1.3. Memcached

Memcached is an in-memory key-value store for small chunks of arbitrary data. Memcached allows applications to take memory from parts of the system where it has more than it needs and make it accessible to areas where applications have less than they need.

GHI uses memcached to reduce the load on the HPSS metadata. Memcached improves the performance of GHI image backup verification, `ghiverifyfs`, and `ghi ls`. Install the memcached and `libmemcached-devel` RPMs from the RHEL software distribution on each machine you want memcached to run to improve operations.

1.3.1. Install memcached and libmemcached

1. Read the release notes to check prerequisites for the appropriate version to use.

```% yum list available | grep memcached
% yum install memcached
% yum install libmemcached```

2. Verify the packages and versions have been properly installed.

```% rpm -qa | grep memcached```
1.3.2. Configure memcached

Setup for RHEL 7 nodes

1. Run the following commands to enable, start, and status memcached.

   % systemctl enable memcached.service
   % systemctl start memcached.service
   % systemctl status memcached.service

2. Verify that memcached configuration files have been created:

   % cd /usr/lib/systemd/system/
   % ls | grep memcached

3. If memcached.service does not exist, follow these steps:


   b. Add the lines below to the file.

   [Unit]
   Description=Memcached
   Before=httpd.service
   After=network.target

   [Service]
   Type=simple
   EnvironmentFile=/etc/sysconfig/memcached
   Restart=always
   ExecStart=/usr/bin/memcached -u $USER -p $PORT -m $CACHESIZE -c $MAXCONN $OPTIONS

   [Install]
   WantedBy=multi-user.target

   c. Create the file /etc/sysconfig/memcached with contents:

   PORT="11211"
   USER="memcached"
   MAXCONN="1024"
   CACHESIZE="64"
   OPTIONS=""

   d. Check status and, if necessary, disable, enable, reload, and restart memcached.service:

   % systemctl list-unit-files | grep memcached
   % systemctl enable memcached.service
   % systemctl daemon-reload
   % systemctl restart memcached.service
   % systemctl status memcached.service

1.4. GHI-ISHTAR

Before installing GHI-ISHTAR, verify that prerequisites hpss-lib, hpss-lib-devel, and hpss-clnt are installed. As of GHI 3.3, ISHTAR is bundled with GHI. The RPM name has changed to be ghi-ishtar-<ghi-version>.0-0, rather than having a specific ISHTAR version number.
Preparing for GHI install

% rpm -qa "hpss*"

1. Install prerequisites if they are missing.

% rpm -ivh hpss-lib-<version>*
% rpm -ivh hpss-lib-devel-<version>*
% rpm -ivh hpss-clnt-<version>*

After HPSS RPMs are installed, a message will appear letting the user know where the package directory is located. This directory path will be needed for the next step.

root@elayne /hpss_src/hpss753 > rpm -ivh hpss-clnt-7.5.3.0-0.el7.ppc64le.rpm
Preparing...                          ################################# [100%]
Updating / installing...
1:hpss-clnt-7.5.3.0-0.el7          ################################# [100%]
Files for package hpss-clnt installed under /hpss_src/hpss-7.5.3.0-0.el7

2. Create /opt/hpss link to the directory where HPSS Client files are installed.

% ln -s /hpss_src/hpss-<version>* /opt/hpss

Example:

% ln -s /hpss_src/hpss-7.5.3.0-0.el7 /opt/hpss

1.5. Install GHI-ISHTAR

GHI-ISHTAR must be installed on all GHI nodes. GHI-ISHTAR is used by the IOM and by session node tools such as ghiverifyaggr.

GHI-ISHTAR is bundled with GHI. Only the provided version should be used with GHI.

$ rpm -ivh ghi-ishtar*.rpm

Files for package ghi-ishtar are installed under /var/hpss/hsi.

Note

HPSS libraries must be installed on each GHI node before GHI-ISHTAR can be installed.
Chapter 2. Spectrum Scale

2.1. Install Spectrum Scale

Contact your IBM Spectrum Scale customer support representative to obtain the Spectrum Scale software, and install it according to instructions.

2.2. Configure Spectrum Scale

1. After Spectrum Scale is installed, make sure `ssh` or `rsh` is working between nodes in the cluster. If using `ssh`, be certain to complete additional configuration steps to allow for passwordless command execution (steps are covered in the Spectrum Scale documentation).

2. Enable threshold processing. Check to see if the requested configuration attributes are set:

   ```
 % mmlsconfig
 % mmchconfig enablelowspaceevents=yes
   ```

3. Configure NSD (Network Shared Disk) multipath. If using multipath, follow the steps below to create NSDs:

   a. Create a `/etc/multipath/bindings` file. The file needs to match on all nodes using the NSD.

   b. Create an `nsddevices` script for NSD discovery:

      ```
 % cp /usr/lpp/mmfs/samples/nsddevices.sample /var/mmfs/etc/nsddevices
      ```

   c. Edit `/var/mmfs/etc/nsddevices` to look like the example below:

      ```
 osName=$(/bin/uname -s)
 if [[$osName = Linux]];
 then
 CONTROLLER_REGEXP='mpath[a-z]+'
 for dev in $(/bin/ls /dev/mapper | egrep $CONTROLLER_REGEXP)
 do
 # dmm vs. generic is used by Spectrum Scale to prioritize internal order
 # of searching through available disks, then later Spectrum Scale
 # discards other disk device names that it finds that match as the
 # same NSD device by a different path. For this reason,
 # dmm vs. generic is an important distinction if you are not
 # explicitly producing the entire and exclusive set of disks
 # that Spectrum Scale should use, as output from this
 # script (nsddevices) and exiting this script with a "return 0".
 echo mapper/$dev dmm
 echo mapper/$dev generic
done
 fi

 # To bypass the Spectrum Scale disk
 # discovery (/usr/lpp/mmfs/bin/mmdevdiscover),
 return 0
      ```
# To continue with the Spectrum Scale disk discovery steps, return 1

d. Ensure this script is executable:

```
% chmod +x /var/mmfs/etc/nsddevices
```

e. Execute `/var/mmfs/etc/nsddevices`.

Example:

```
% /var/mmfs/etc/nsddevices
mapper/mpatha dmm
mapper/mpathb dmm
mapper/mpathc dmm
```

## 2.3. Create SSH trust

After Spectrum Scale is installed, create SSH trust between all nodes in each direction in each node and between each node. Be certain to complete additional configuration steps to allow for passwordless command execution.

## 2.4. Create a new Spectrum Scale cluster

Run the command to create a Spectrum Scale cluster on only the main node. Upon successful completion of the `mmcrcluster` command, the `/var/mmfs/gen/mmsdrfs` and the `/var/mmfs/gen/mmfsNodeData` files are created on each node in the cluster.

1. Run `mmcrcluster`.

   Example:

   ```
 % mmcrcluster -n /var/hpss/ghi/gpfs_config/node.conf -p ghi_server1 \
 -r /usr/bin/ssh -R /usr/bin/scp
   ```

2. Check that the `mmsdrfs` and `mmfsNodeData` files are created and the output shows success and completion:

   ```
 % cat /var/mmfs/gen/mmsdrfs
 % cat /var/mmfs/gen/mmfsNodeData
   ```

Output:

```
mmcrcluster: Performing preliminary node verification ...
mmcrcluster: Processing quorum and other critical nodes ...
mmcrcluster: Finalizing the cluster data structures ...
mmcrcluster: Command successfully completed
mmcrcluster: Warning: Not all nodes have proper GPFS license designations.
mcrcluster: Propagating the cluster configuration data to all affected nodes. This is an asynchronous process.
```

## 2.4.1. Configure license

The `mmchlicense` command designates appropriate Spectrum Scale licenses. Run `mmchlicense` to accept and configure licenses.

```
% mmchlicense server --accept -N all
```
Output (the following nodes will be designated as possessing server licenses):

ghi_server2.clearlake.ibm.com
ghi_server1.clearlake.ibm.com

2.4.2. Create NSDs on the main GHI node only

1. On the primary GHI node, create NSD configuration file(s) for each disk:

% cd /var/hpss/ghi/gpfs_config
% touch nsd.StanzaFile nsd.StanzaFile2 ... nsd.StanzaFileX
% vi nsd.StanzaFile

2. Add the following lines:

%nsd:
   device=/dev/sdb
   nsd=nsd1
   servers=ghi_server1
   usage=dataAndMetadata
% vi nsd.StanzaFile2

3. Add the following lines:

%nsd:
   device=/dev/sdc
   nsd=nsd2
   servers=ghi_server1
   usage=dataAndMetadata

   Note
   Create a block for each resource. Include all GHI nodes that see the disk, separated by a comma. For example, if two servers share a disk resource "servers=" value, the line will contain both hostnames like this: servers= <node1 shortname>, <node2 shortname>.

4. Create NSD stanzas file that uses the multipath aliases. For systems using multipath, skip this step if you are not using multipath. Edit /var/hpss/ghi/gpfs_config/nsd.StanzaFile and insert the lines below:

%nsd: device=/dev/mapper/mpatha
   nsd=nsd1
   servers=ghi_server1,ghi_server2
   usage=dataAndMetadata

5. Enable DMAPI on the Spectrum Scale file system:

% mmchfs <file system> -z yes

6. Run the mmcrnsd command to create NSD servers. The option -F specifies the file containing the NSD stanzas for the disks to be created. The option -v no specifies that the disks are to be created irrespective of their previous state.

% mmcrnsd -F /var/hpss/ghi/gpfs_config/nsd.StanzaFile -v no

mmcrnsd: Processing disk sdb
mmcrnsd: Propagating the cluster configuration data to all affected nodes.
This is an asynchronous process.

% mmcrnsd -F /var/hpss/ghi/gpfs_config/nsd.StanzaFile2 -v no

mmcrnsd: Processing disk sdc
mmcrnsd: Propagating the cluster configuration data to all affected nodes.
This is an asynchronous process.

7. Ensure all the Spectrum Scale nodes are active and then create the Spectrum Scale file system. Wait until the mmgetstate output shows that all nodes are active before issuing the mmcrfs command.

% mmgetstate -a

<table>
<thead>
<tr>
<th>Node number</th>
<th>Node name</th>
<th>GPFS state</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ghi_server1</td>
<td>active</td>
</tr>
<tr>
<td>2</td>
<td>ghi_server2</td>
<td>active</td>
</tr>
</tbody>
</table>

If the node state remains down, run mmstartup -a to start Spectrum Scale. If the node state remains down after mmstartup, check the Spectrum Scale logs. If the node state is arbitrating, check the Spectrum Scale logs. If the node needs to be recycled, run mmshutdown -a, and rerun mmstartup.

**Note**

The Spectrum Scale log location is /var/mmfs/gen/mmfslog.

8. Run mmcrfs to create the file system(s) with options to enable automount (-A yes), activate quotas automatically (-Q yes), enable DMAPI (-z yes), set blocksize (-B 256K), and specify that the disk not belong to an existing file system (-v no). For purposes of this documentation, the mmcrfs commands below have each been split into two separate lines; each indented line should be considered as part of the command line above it, with no breaks.

% mmcrfs /ghi_server1_fs1 /dev/ghi_server1_fs1  
- F var/hpss/ghi/gpfs_config/nsd.StanzaFile -A yes -Q yes -z yes -B 256K -v no

% mmcrfs /ghi_server1_fs2 /dev/ghi_server1_fs2  
- F var/hpss/ghi/gpfs_config/nsd.StanzaFile2 -A yes -Q yes -z yes -B 256K -v no

**Note**

If the user plans on having a Spectrum Scale file system without a GHI file system for image restores, the "temp space" Spectrum Scale file system should have DMAPI set to "no" (-z no).

Sample output:

The following disks of ghi_server1_fs2 will be formatted on node ghi_server2.clearlake.ibm.com:
    nsd2: size 153600 MB
Formatting file system ...
Disks up to size 1.51 TB can be added to storage pool system.
Creating Inode File
Creating Allocation Maps
Creating Log Files
Clearing Inode Allocation Map
Clearing Block Allocation Map
Formatting Allocation Map for storage pool system
Completed creation of file system /dev/ghi_server1_fs2.
mmlcrfs: Propagating the cluster configuration data to all affected nodes. This is an asynchronous process.

Note

Use **mmlsfs** to list the file system attributes. For example, if you want to check if DMAPI is enabled on all Spectrum Scale file systems, run: **mmlsfs all | grep DMAPI**

9. Display the configuration data for a Spectrum Scale cluster for each node. Log in to the main node:

```bash
% root@ghi_server1 /var/mmfs > mmlsconfig
```

Configuration data for cluster ghi_server1.clearlake.ibm.com:

```
clusterName ghi_server1.clearlake.ibm.com
clusterId 16335425671093415616
autoload no
dmapiFileHandleSize 32
minReleaseLevel 5.0.2.0
ccrEnabled yes
cipherList AUTHONLY
adminMode central

File systems in cluster ghi_server1.clearlake.ibm.com:

/dev/ghi_server1_fs1
/dev/ghi_server1_fs2
```

Log in to all secondary nodes to check:

```bash
% root@ghi_server2 /root > mmlsconfig
```

Configuration data for cluster ghi_server1.clearlake.ibm.com:

```
clusterName ghi_server1.clearlake.ibm.com
clusterId 16335425671093415616
autoload no
dmapiFileHandleSize 32
minReleaseLevel 5.0.2.0
ccrEnabled yes
cipherList AUTHONLY
adminMode central

File systems in cluster ghi_server1.clearlake.ibm.com:

/dev/ghi_server1_fs1
/dev/ghi_server1_fs2
```

### 2.4.3. NSD multipath

1. Configure NSD multipath. If using multipath, follow the steps below to create NSDs:

   a. Create a `/etc/multipath/bindings` file. The file needs to match on all nodes using the NSD.
b. Create an **nsddevices** script for NSD discovery.

```bash
% cp /usr/lpp/mmfs/samples/nsddevices.sample /var/mmfs/etc/nsddevices
```

c. Edit `/var/mmfs/etc/nsddevices` to look like the example below:

```bash
osName=${(/bin/uname -s)}

if [[$osName = Linux]]
then
 CONTROLLER_REGEX='mpath[a-z]+'
 for dev in $(/bin/ls /dev/mapper | egrep $CONTROLLER_REGEX)
do
 # dmm vs. generic is used by Spectrum Scale to prioritize internal
 # order of
 # searching through available disks, then later Spectrum Scale
 # discards other disk device names that it finds that match as the same
 # NSD device by a different path. For this reason, dmm vs. generic is an
 # important distinction if you are not explicitly producing the entire
 # and exclusive set of disks that Spectrum Scale should use,
 # as output from
 # this script (nsddevices) and exiting this script with a "return 0".
 echo mapper/$dev dmm
 echo mapper/$dev generic
 done
fi

if [[$osName = AIX]]
then:
 # Add function to discover disks in the AIX environment.
fi

To bypass the Spectrum Scale disk discovery
(/usr/lpp/mmfs/bin/mmdevdiscover),
return 0
To continue with the Spectrum Scale disk discovery steps,
return 1

d. Ensure the script is executable. Example:

```bash
% chmod +x /var/mmfs/etc/nsddevices
```

e. Execute `/var/mmfs/etc/nsddevices`. Example:

```bash
#/var/mmfs/etc/nsddevices
mapper/mpatha dmm
mapper/mpathb dmm
mapper/mpathc dmm
```

f. Create NSD stanzas file that uses the multipath aliases. Edit `/var/hpss/ghi/gpfs_config/nsd.StanzaFile` and insert the lines:

```bash
%nsd: device=/dev/mapper/mpatha
nsd=nsd1
servers=ghi_server1,ghi_server2
usage=dataAndMetadata
```

g. Continue with creating NSDs.
2. Enable DMAPI on the Spectrum Scale file system:

```bash
% mmchfs <file system> -z yes
```
Chapter 3. Db2

3.1. Users and groups

GHI needs three users (hpss, hpssdb, hpssdmg) and two groups (hpss, hpsssrvr) on all GHI nodes that will have the HPSS client installed. The user and group ID numbers created on the GHI nodes must match the corresponding user and group ID numbers on the HPSS Core Server. User IDs hpss and hpssdb should exist after the HPSS Core Server has been installed and configured. The user ID hpssdmg will need to be created on the HPSS Core Server using `hpssuser`.

1. Use the system command `id` to verify the required users and groups exist:

```
% id <user>
% id -g <user>
```

<table>
<thead>
<tr>
<th>User</th>
<th>Primary Group</th>
<th>Home Directory:</th>
</tr>
</thead>
<tbody>
<tr>
<td>hpss</td>
<td>hpss</td>
<td>/var/hpss</td>
</tr>
<tr>
<td>hpssdb</td>
<td>hpssdb</td>
<td>/db2data/db2_hpssdb</td>
</tr>
<tr>
<td>hpssdmg</td>
<td>hpsssrvr</td>
<td>/var/hpssdmg</td>
</tr>
</tbody>
</table>

2. If any of the above users or groups do not exist, use the `useradd` system command to add them. The following shows the usage of the `useradd` command and an example adding hpssdb as a user and group:

```
% useradd -d <home directory> -g <group> -p password <user>
% useradd -d /db2data/db2_hpssdb -g 300 -p hpssdb hpssdb
```

3. Ensure the Core Server and GHI nodes have matching entries for users hpss, hpssdb, and hpssdmg in the `/etc/passwd` and `/etc/group` files:

```
% cat /etc/passwd | grep hpss
hpss:x:300:300:HPSS User:/var/hpss:/bin/bash
hpssdba:x:301:301:/db2data/db2_hpssdb:/bin/bash
hpssdmg:x:1001:302::/var/hpssdmg:/bin/bash

% cat /etc/group | grep hpss
hpss:x:300:hpss,hpssdba
hpssdba:x:301:root
hpsssrvr:x:302:hpssdmg
```

The hpssdmg user in `/etc/passwd` is in the primary group of hpsssrvr. Also notice that in `/etc/group` hpssdmg is a secondary group to hpsssrvr. Make sure all Core Server and GHI nodes have the same configuration and passwords.

3.1.1. Add hpssdmg with the hpssuser tool

1. On the HPSS Core Server, use `hpssuser` to add user hpssdmg with Unix Authentication. If your site instead uses Kerberos Authentication, begin with Step 2, below.
On the HPSS Core Server, use `hpssuser` to add user hpssdmg with Kerberos Authentication. However, if your site uses Unix Authentication, skip this step and continue to Step 3.

```bash
$ /opt/hpss/bin/hpssuser -add hpssdmg -unix -krb -krbkeytab /var/hpss/etc/hpss.keytab
User ID#: 1001
Primary group name: hpsssrvr
Enter password for hpssdmg: [hpssdmg]
Re-enter password to verify: [hpssdmg]
Full name: hpssdmg
Login shell: /bin/bash
Unix (local/system) home directory: /var/hpssdmg
[ adding unix user ]
[ added unix user ]
[ adding kerberos principal ]
INFO: Using kadmin.local for kerberos administrative actions
[ adding kerberos keytab entry to '/var/hpss/etc/hpss.keytab' ]
[ added kerberos keytab entry to '/var/hpss/etc/hpss.keytab' ]
```

3. Check that hpssdmg has been added to `/var/hpss/etc/passwd` and to `/var/hpss/etc/group` under the group hpsssrvr. This step is valid only if you are using HPSS local password and group files; otherwise, skip this step.

```bash
% cat /var/hpss/etc/passwd | grep hpssdmg
hpssdmg:x:1001:301:hpssdmg:/var/hpssdmg:/bin/bash

% cat /var/hpss/etc/group | grep hpssdmg
hpsssrvr:*:301:hpssmvr,hpsssd,hpssftp,hpsssm, hpsspvr, hpssgk, hpssmps, hpssrait, hpsscore, hpsspvl, hpssfs, hpssls, hpssdmg
```

4. Copy HPSS Core `/var/hpss/etc/` to each GHI node with `scp`. On the core:

```bash
% cd /var/hpss/etc
% tar -cvzf /tmp/etcnew.tar.gz ./
% scp /tmp/etcnew.tar.gz root@<GHI NODE>:~/var/hpss
```

5. Move and rename the old `/var/hpss/etc` directory, and create a new `/var/hpss/etc` directory. On each GHI node:

```bash
% cd /var/hpss/
% mv etc etc.ori
% mkdir /var/hpss/etc
% cp /var/hpss/etcnew.tar.gz /var/hpss/etc
% cd /var/hpss/etc
```
% tar -xzvf etcnew.tar.gz

6. Link /var/hpss/hpssdb to the hpssdb user’s home directory. On each GHI node:

$ ln -s /db2data/db2_hpssdb /var/hpss/hpssdb

3.2. Add hpssdmg to HPSS ACL on Core Server

Execute the HPSS ACL utility on your HPSS Core Server to add user hpssdmg, if necessary. Look at the output and choose the Account Validation Interface menu option. Next run the `show` command to determine if hpssdmg needs to be added. The order of ACL entries may differ from the following example:

```
% /opt/hpss/bin/hpss_server_acl
hsa> acl -t CORE
1) PVL Mount Notification Interface (v1) 007ff347-e533-1cc6-b22d-02608c2cedf4
2) Client Interface (v1) 32ba9692-4667-11d6-aa3a-0004ac49692b
3) Account Validation Interface (v1) 647f22a8-a1e9-11d3-a739-000001341966
4) Realtime Monitor Interface (v1) 80c9a256-2f13-11d3-a0c8-000001341966
Select an interface
Choose an item by number (RET to cancel):
> 3
hsa> show
perms - type - ID (name) - realm ID (realm)
=============================================
 r--c--- - user - 302 (hpssftp) - 10000 (<core_server>.clearlake.ibm.com)
 r--c--- - user - 306 (hpssfs) - 10000 (<core_server>.clearlake.ibm.com)
 rw-c-dt - user - 307 (hpssmps) - 10000 (<core_server>.clearlake.ibm.com)
 rw-c-d- - user - 312 (hpssssm) - 10000 (<core_server>.clearlake.ibm.com)
 -------t - any_other

hsa> add user hpssdmg rwc
hsa> show
perms - type - ID (name) - realm ID (realm)
=============================================
 r--c--- - user - 302 (hpssftp) - 10000 (<core_server>.clearlake.ibm.com)
 r--c--- - user - 306 (hpssfs) - 10000 (<core_server>.clearlake.ibm.com)
 rw-c-dt - user - 307 (hpssmps) - 10000 (<core_server>.clearlake.ibm.com)
 rw-c-d- - user - 312 (hpssssm) - 10000 (<core_server>.clearlake.ibm.com)
 -------t - any_other

hsa> quit
```

3.3. Set up GHI tablespace on the HPSS Core Server

GHI should be configured to use the same Db2 storage group that is used in HPSS.
Important

GHI tablespaces should be configured on the HPSS Core Server only while the HPSS system is down. The actual configuration for Db2 should be determined during the system engineering planning phase of the deployment. The GHI Db2 mapping table has the potential to become very large and care should be taken in configuring Db2 to handle it.

Note

Repeat this section to set up the GHI tablespace on the HA Backup Core Server for proper failover operations.

3.3.1. Database using single partition

This configuration is performed only on the HPSS Core Server while Db2 is running and HPSS servers are down.

1. Shut down all servers via the HPSS GUI.

2. Find the number of partitions. As hpssdb user, the following shows there is only one partition:

   ```
   % cat $HOME/sqllib/db2nodes.cfg
   0 <core_server>.clearlake.ibm.com 0
   ```

3. Source the database profile:

   ```
   % source -hpssdb/sqllib/db2profile
   ```

4. Create the database. The second of the following two examples is the default for a one partition and two storage paths file system. For systems that do not use the default, edit path partition names and storage path file systems to match your system configuration. The following examples show path names and partition expressions usage:

   ```
   % db2 "CREATE DATABASE HGHI ON 
   '\'/db2data/p0000/stg0001', 
   '\'/db2data/p0000/stg0002' 
   DBPATH ON '/db2data/db2_hpssdb'"
   ```

   ```
   % db2 "CREATE DATABASE HGHI ON 
   '\'/db2data/p $4N /stg0001', 
   '\'/db2data/p $4N /stg0002' 
   DBPATH ON '/db2data/db2_hpssdb'"
   ```

5. Modify the callback script to source the database profile (DB2PROF):

   ```
   % vim /opt/ghi/bin/hpssEventNotify
   ```

3.3.2. Create database partition group

1. Connect to the HGHI database:

   ```
   % db2 CONNECT TO HGHI
   ```

2. For a single partition run the command:
% db2 "CREATE DATABASE PARTITION GROUP HPSS_GHI ON DBPARTITIONNUM (0)"

3. Check that a partition is created:

$ db2 list db partition groups

Example output:

<table>
<thead>
<tr>
<th>DATABASE PARTITION GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPSS_GHI</td>
</tr>
<tr>
<td>IBMCATGROUP</td>
</tr>
<tr>
<td>IBMDEFAULTGROUP</td>
</tr>
</tbody>
</table>

3 record(s) selected.

4. Create the bufferpool used for GHI DB tablespace:

% db2 "CREATE BUFFERPOOL SMALLTABLES \\
 DATABASE PARTITION GROUP HPSS_GHI SIZE 1000 AUTOMATIC \\
PAGESIZE 4K"

5. Create the bufferpool used for GHI mapping tablespace:

% db2 "CREATE BUFFERPOOL bp32k \\
 DATABASE PARTITION GROUP HPSS_GHI SIZE 1000 AUTOMATIC \\
PAGESIZE 32K"

6. Create Db2 tablespaces.

a. Create Db2 tablespace for GHIDB:

% db2 "CREATE LARGE TABLESPACE GHIDB \\
 IN DATABASE PARTITION GROUP HPSS_GHI \\
PAGESIZE 4K \\
 MANAGED BY AUTOMATIC STORAGE \\
 AUTORESIZE YES \\
 INITIALSIZE 32M \\
 MAXSIZE NONE \\
 EXTENTSIZE 128 \\
 PREFETCHSIZE AUTOMATIC \\
 BUFFERPOOL "SMALLTABLES" \\
 OVERHEAD 7.500000 \\
 TRANSFERRATE 0.060000 \\
 NO FILE SYSTEM CACHING \\
 DROPPED TABLE RECOVERY ON \\
 DATA TAG NONE"

b. Create Db2 tablespace for GHIMAPPING:

% db2 "CREATE LARGE TABLESPACE GHIMAPPING \\
 IN DATABASE PARTITION GROUP HPSS_GHI \\
PAGESIZE 32K \\
 MANAGED BY AUTOMATIC STORAGE \\
 AUTORESIZE YES \\
 EXTENTSIZE 128 \\
 PREFETCHSIZE AUTOMATIC \\
 BUFFERPOOL BP32K \\
 DATA TAG NONE"
OVERHEAD 7.500000 \
TRANSFERRATE 0.060000 \
MAXSIZE NONE \
NO FILE SYSTEM CACHING \
DROPPED TABLE RECOVERY ON

3.3.3. Configure logging on the HPSS Core Server

1. Grant user hpss access to the database:

 % db2 "grant connect on database to user hpss"
 % db2 "grant createtab on database to user hpss"
 % db2 "grant dbadm on database to user hpss"

2. Configure the primary logs, secondary logs, log archives, log file size, and number of logs similar to the standard of the HPSS databases:

 % mkdir /db2data/p0000/db2_log/hghi
 % db2 "update db cfg for hghi using NEWLOGPATH <primary_log_path> hghi"
 % db2 "update db cfg for hghi using NEWLOGPATH '/db2data/p0000/db2_log/hghi'"
 % mkdir /db2data/p0000/db2_logmirror/hghi
 % db2 "update db cfg for hghi using MIRRORLOGPATH <secondary_log_path> hghi"
 % db2 "update db cfg for hghi using MIRRORLOGPATH '/db2data/db2_logmirror/hghi'"
 % db2 "update db cfg for hghi using AUTO_MAINT off"
 % db2 "update db cfg for hghi using AUTO_RUNSTATS off"
 % db2 "update db cfg for hghi using AUTO_TBL_MAINT off"
 % mkdir /db2data/p0000/db2_logarchive1/hghi
 % db2 "update db cfg for hghi using LOGARCHMETH1 \ DISK: <primary_log_archive_path>/hghi/"
 % db2 "update db cfg for hghi using LOGARCHMETH1 \ DISK:/db2data/p0000/db2_logarchive1/hghi/"
 % mkdir /db2data/p0000/db2_logarchive2/hghi
 % db2 "update db cfg for hghi using LOGARCHMETH2 \ DISK:<secondary_log_archive_path>/hghi/"
 % db2 "update db cfg for hghi using LOGARCHMETH2 \ DISK:/db2data/p0000/db2_logarchive2/hghi/"
 % db2 "update db cfg for hghi using LOGFILSIZ 25000"
 % db2 "update db cfg for hghi using LOGPRIMARY 10"
 % db2 "update db cfg for hghi using LOGSECOND -1"

Table 3.1. LOGBUFSZ

<table>
<thead>
<tr>
<th>Machine Memory</th>
<th>LOGBUFSZ <Table Value></th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 16 GB RAM</td>
<td>4096</td>
</tr>
<tr>
<td>Between 16 GB and 64 GB RAM</td>
<td>8192</td>
</tr>
<tr>
<td>Greater than 64 GB RAM</td>
<td>16384</td>
</tr>
</tbody>
</table>

 % db2 "update db cfg for hghi using LOGBUFSZ <table value>"
 % db2 "update db cfg for hghi using DFT_QUERYOPT 2"

3. Disconnect from the database:

 % db2 disconnect all
3.4. Install Db2 client on all GHI nodes

Install the Db2 client on each Spectrum Scale quorum node (all nodes which include “quorum” in the “Designation” column from the `mmlscluster` command). Follow the IBM Db2 Command Reference document to install the server.

3.5. Add Db2 permanent licenses on all GHI nodes

Add a permanent license on each Spectrum Scale quorum node that has the Db2 client installed.

1. Add license:

 `% cd /opt/ibm/db2/<version>/adm
 `% ./db2licm -a <path name to Db2 generic license file>/db2aese_c.lic`

 Note

 The generic Db2 license file (`*/db2/license/db2ese_c.lic`) can be found on the Db2 Installation CD or image. It can also be obtained by contacting HPSS support.

 Refer to the IBM Db2 Command Reference document for more information on how to use the `db2licm` utility to manage the Db2 license. Create the Db2 database connection on the GHI session nodes which should already have the Db2 client installed per the prerequisites.

2. Create an instance as root:

 `% /opt/ibm/db2/<version>/instance/db2icrt -a CLIENT -s client -u hpssdb hpssdb`

3. Source `db2profile` system-wide to establish database environment. As root, add lines to `aliases.sh`.

 `$ su - root
 $ vim /etc/profile.d/aliases.sh
 . ~hpssdb/sqllib/db2profile`

4. Set `DB2COMM`. As `hpssdb`:

 `% su - hpssdb
 `% db2set DB2COMM=tcpip`

5. Verify that `DB2COMM` is set to "TCP/IP”:

 `% db2set -all
 [i] DB2COMM=TCPIP
 [g] DB2SYSTEM=ghi_server1.clearlake.ibm.com`

6. Verify the local services in `/etc/services` file for Db2 support. As root, copy the Db2 service entries from the Core Server `/etc/services` file. The number of entries will differ based on configuration. Example output:

 `# Local services`
7. Catalog the database profile:

% db2 catalog tcpip node $NODE remote $HPSS_CORE server $PORT
% db2 catalog tcpip node ghi_server2 remote <HPSS_Core_server> server 59999
DB20000I The CATALOG TCPIP NODE command completed successfully.
DB21056W Directory changes may not be effective until the directory cache is refreshed.

Where:

$NODE
unique name; using the short host name of the current machine is recommended.

$HPSS_CORE
hostname of the HPSS Core server.

$PORT
port number acquired from the Core Server /etc/services file.

Steps to check hpssdb port on Core Server:

a. Source the database profile:

% . ~hpssdb/sql/lib/db2profile

b. Run the command:

% db2 get dbm cfg | grep SVCENAME

c. Look at the value for the SVCENAME:

TCP/IP Service name (SVCENAME) = db2_hpssdb

d. Cat the /etc/services file and grep for the SVCENAME from above:

% cat /etc/services | grep db2_hpssdb

e. Use the port number found from the grep of the /etc/services file for $PORT.

8. Catalog the database hghi:

% db2 catalog db hghi as hghi at node $NODE
% db2 catalog db hghi as hghi at node ghi_server2

Db20000I The CATALOG DATABASE command completed successfully.
Db21056W Directory changes may not be effective until the directory cache is refreshed.

Verify that the Db2 client can connect to the Db2 server on the HPSS core machine:

% /opt/ghi/bin/ghi_db_test --connect
9. Catalog each hpss subsystem database (for ghi_verify.py):

% db2 catalog db hsubsys1 as hsubsys1 at node $NODE

% db2 catalog db hsubsys1 as hsubsys1 at node ghi_server2
Db20000I The CATALOG DATABASE command completed successfully.
Db21056W Directory changes may not be effective until the directory cache is refreshed.
Chapter 4. HPSS

The HPSS Core Server must also be able to connect to the network configured for the Spectrum Scale configuration. For example, if the Spectrum Scale cluster is configured exclusively on a data network, HPSS must be able to connect to that data network, even if the Spectrum Scale nodes also have an additional network to connect to the HPSS Core Server.

4.1. Verify HPSS RPMs on all GHI nodes

Verify that the following RPMs are installed on all the GHI nodes:

```
% rpm -qa | grep hpss
hpss-clnt-<version>*
hpss-lib-<version>*
hpss-lib-devel-<version>*
```

These should exist when GHI-ISHTAR was previously installed.

4.2. Configure the HPSS client

1. Set up /var/hpss/etc on GHI client machines.

 a. Verify that /var/hpss/etc/* was copied from the HPSS Core Server to each GHI node.

 b. Add HPSS_API_HOSTNAME=<long hostname> to /var/hpss/etc/env.conf.

 c. Add HPSS_PTHREAD_STACK=524288 to /var/hpss/etc/env.conf.

2. Set up authentication. Copy the HPSS PAM module (/etc/pam.d/hpss) from the HPSS Core Server to /etc/pam.d/hpss on all GHI nodes.

3. Set up links:

```
% /opt/ibm/db2 > ln -s /opt/ibm/db2/<version> /opt/ibm/db2/default
% /opt/ghi/db2 > ln -s /opt/ibm/db2/<version> /opt/ghi/db2/default
```

4. If using Kerberos authentication, copy /etc/krb5.conf from the HPSS Core Server to all GHI nodes.

5. Specify the HPSS_NET_FAMILY. Ensure that the HPSS client configuration has the correct HPSS_NET_FAMILY in /var/hpss/etc/env.conf. The default value is "ipv4_only". Examples:

```
ipv6_only
ipv4_only
ipv6
```
Chapter 5. GHI installation and configuration

5.1. Install GHI

1. Install the following RPMs on all non-IOM nodes:

% rpm -ivh ghi-lib-<version>.el#.hpss.<hpss version>.<architecture>.rpm
% rpm -ivh ghi-<version>.el#.hpss.<hpss version>.<architecture>.rpm
% rpm -ivh ghi-ishtar-<version>.el#.hpss.<hpss version>.<architecture>.rpm

GHI files will be installed under the directory /hpss_src/ghi-<version>. Note that the ghi-iom RPM should not be installed on the same machine as the ghi RPM. See IOM install for information on installing the ghi-iom RPM.

2. Create a link at /opt/ghi to /hpss_src/ghi-<version>. GHI requires this link to exist to function properly.

% ln -s /hpss_src/ghi-<version> /opt/ghi

3. Verify that the following directories exist:

/opt/ghi
/opt/ghi/bin
/opt/ghi/lib
/usr/share/man/cat7
/var/hpss/ghi
/var/hpss/ghi/policy
/var/hpss/ghi/config
/var/hpss/ghi/config/templates
/var/hpss/hsi/bin

4. Create a /var/hpss/ghi/etc directory:

% mkdir /var/hpss/ghi/etc

5.1.1. Configure GHI-ISHTAR

1. Copy the htar.ksh wrapper script to /var/hpss/hsibin:

% cd /var/hpss/hsi/bin
% cp htar.ksh.template htar.ksh
% edit htar.ksh (Variables to modify are described with example below)
% /bin/chmod 755 htar.ksh

2. Modify the htar.ksh script to provide correct values for the following variables:

TMPDIR
Location of the temporary files. The amount of space required is based on the size of an aggregate, plus temporary files created for the data files. Example:
export TMPDIR=/<Spectrum Scale_mount_point>/scratch/.ghi

DEFAULT_REALM
Realm name for the location of the HPSS Core Server. This name must match what is set for "site name" in /var/hpss/etc/site.conf from the Core Server. Example:

```bash
if [ "$DEFAULT_REALM" = "" ]; then
  DEFAULT_REALM=core_server.clearlake.ibm.com
fi
```

HPSS_AUTH_METHOD
Set this variable for the desired authentication type ("unix" for UNIX, or "kerberos" for Kerberos). This variable will determine the keytab file you will use. Example:

```bash
export HPSS_AUTH_METHOD=unix
```

HPSS_KEYTAB_PATH
Location of keytab. Set this variable when using UNIX authentication (ex. /var/hpss/etc/hpssdmg.unix.keytab). Example:

```bash
export HPSS_KEYTAB_PATH=/var/hpss/etc/hpssdmg.unix.keytab
```

HPSS_HOSTNAME
Interface to be used for the data path. Example:

```bash
export HPSS_HOSTNAME=ghi_server1
```

5.2. GHI users and groups

All authentication and authorization are done using the hpssdmg principal. The numeric IDs must match those on the HPSS Core Server, which may be obtained from the /etc/passwd file on your HPSS Core Server.

1. Verify the hpssdmg user ID exists on each GHI node.
2. Verify group ID hpsssrvr is set for hpssdmg.

If the user hpssdmg or group hpsssrvr do not exist, create them.

5.3. Configure GHI

GHI is configured using command-line tools. All the GHI commands discussed in this section are fully documented in the *GHI Management Guide*.

These are the steps to configure GHI:

1. Create GHI cluster from the Spectrum Scale configuration.
2. Add the Spectrum Scale file system for GHI to manage.
3. Add IOMs for each GHI-managed Spectrum Scale file system.
5.4. Create the GHI cluster

Define the overall cluster configuration, including the nodes which will be known to GHI (not necessarily all nodes known to Spectrum Scale). This is accomplished using the ghicrcluster command. The ghicrcluster command must run on the session node that is designated as "cluster manager node". Use the mmlsmgr command to determine which node is the cluster manager.

```
root@ghi_server1 /var/hpss/hsi/bin > mmlsmgr
file system manager node
------------------ ------------------
ghi_server1_fs2    192.168.221.199 (ghi_server1)
ghi_server1_fs1    192.168.221.200 (ghi_server2)
Cluster manager node: 192.168.221.199 (ghi_server1)
```

In addition, Spectrum Scale must be running when defining the cluster configuration to GHI.

All nodes that are designated as quorum with the mmlscluster command must be listed after the cluster manager. This will allow GHI to assign them as a manager node in the case of a failover.

```
% ghicrcluster [-v] <GHI_node1> <GHI_node2> <GHI_node3> ...
% ghicrcluster [-v] -N <nodelist_file>
% ghicrcluster -r [-v]
```

Where:

- `<GHI_node#> | <nodelist_file>`
 The node list of machines from mmlscluster which will have the designation of "manager" in the command mmlscluster.

The below command is an example:

```
% ghicrcluster -v firefly falcon
```

After ghicrcluster returns "Done.", restart Spectrum Scale and GHI:

```
% ghishutdown -G
% ghistartup -G
```

Note

If ghicrcluster fails during the configuration, retry the configuration step with the "-r" option after the errors from the failure are resolved (ghicrcluster -r [-v]).

5.5. Create the Spectrum Scale file systems GHI will manage

Use the command ghiaddfs for each file system to be created, which may be issued from any node in the cluster. File systems to be defined must not be mounted in Spectrum Scale when the ghiaddfs command is issued. The ghiaddfs command will supply default values for the file system which can be updated or changed with the command ghichfs.
For each file system, the name and mount point are supplied by the user. The ports to be used by the associated SD and ED may also be user-supplied or left to their default values.

For each file system, the name and mount point are supplied by the user. The ports to be used by the associated SD and ED may also be user-supplied or left to their default values.

```
ghiaddfs [-v] <FS_Name> [-c "# <comment>"] <Mount_Point> [<SD_Port> <ED_Port>]
```

Where:

- `<FS_Name>`
 The same as the Spectrum Scale configuration name.

- `<Mount_Point>`
 The same as the Spectrum Scale configuration mount point.

- `<SD_Port>`
 The default scheduler daemon port is 80x0, where "x" is the order in which file systems were configured; for example, 8010 for the first configured file system. GHI will assign a port if one is not specified.

- `<ED_Port>`
 The default event daemon port is 80x1, where "x" is the order in which file systems were configured; for example, 8011 for the first configured file system. GHI will assign a port if one is not specified.

The below command is an example:

```
ghiaddfs firef1y /firef1y
```

5.6. Create IOMs for each GHI-managed file system

If you have multiple GHI nodes, you should create one IOM per GHI file system on each node. Each file system will use the same IOM port number across all nodes.

The default port selected for an IOM is 80x2, where "x" is the order in which the file system was configured (8012 for the first configured file system, 8022 for the second configured file system, and so on). For more details about ports, see the *GHI Management Guide*.

Install the ghi-iom, ghi-lib, and ghi-ishtar RPMs on each node that will be used as an IOM and link the GHI install location with the /opt/ghi directory.

```
rpm -ivh ghi-lib-<version>.el#.hpss.<hpss version>.<architecture>.rpm 
ghi-iom-<version>.el#.hpss.<hpss version>.<architecture>.rpm 
ghi-ishtar-<version>.el#.hpss.<hpss version>.<architecture>.rpm
```

```
l -s /hpss_src/ghi-<version> /opt/ghi
```

Refer to the *GHI Management Guide* for more details about `ghiaddiom`.

```
ghiaddiom [-vd|D] <File System name> [-c "# <comment>"] <IOM Node> 
<active_on_session_node> <estimate_transfer_rate> <chunksize>
```

Where:
<File System name>
 Name of the file system added with the ghiaddfs command.

<IOM Node>
 Name of the node the IOM will run on.

<active_on_session_node>
 Active state of the IOM on the manager session node.

<estimate_transfer_rate>
 Estimated data transfer rate.

<chunksize>
 Maximum number of bytes to transfer per non-aggregate HPSS I/O request.

Example:

% ghiaddiom -v firefly firefly:8012 TRUE 1GB 1TB

5.7. Modify the xinetd.conf file for the number of IOMs

% vi /etc/xinetd.conf

Change "cps = 50 10" to "cps = <IOM thread pool size × number of IOMs> 10".

The IOM thread pool size can be obtained from ghilsfs <file system> --iotps.

5.8. Information Lifecycle Management (ILM) policies

GHI makes use of Spectrum Scale ILM policies. A policy is a plain-text file that describes files and directories to be included or excluded from processing. IBM provides templates which you may use as a starting point to configure custom policies. These templates can be found in the /var/hpss/ghi/policy directory. Below is a list of policy templates.

migrate.policy
 This file can be placed in any directory in the system. The policy should have separate rules for aggregates and non-aggregates. The script ghi_migrate is invoked from the policy engine and requires a "-a" option to process aggregates.

reset_incomplete_migration.policy
 Use this policy to reset files for which a migration was started but never completed. Such files will show as "[incompletely-migrated]" when listed with ghi_ls -h. They are "migrated enough" such that Spectrum Scale will not select them to be re-migrated, and the migration-reset process will result in the files being set back to "un-migrated" so that Spectrum Scale will select them in the next applicable migration policy run. This file can be placed in any directory in the system.
recall.policy
The recall policy does not use a bulk size. The policy generates a list. That list is parsed into aggregates and non-aggregates. The recall.policy file can be placed in any directory in the system.

tape_smart_migration.policy
This is an example used to migrate files in a tape-smart manner. Files are migrated by HPSS file families and by path name. This policy can be used in combination with the --split-filelists-by-weight option for mmapplypolicy to generate file lists that contain elements with the same WEIGHT value.

backup_migration.policy
The migration policy will run a full Spectrum Scale scan and will attempt to migrate any files that are not stored currently in HPSS. The policy file should be updated to reflect the migration rules used for this file system. The policy should be able to select every file that has not been migrated to HPSS and exclude any file which should not be migrated. Verify that the backup migration policy matches what is being backed up in the backup_metadata.policy file to ensure that files which have not been migrated are included in the metadata backup.

backup_metadata.policy
This policy is used by the Spectrum Scale SOBAR mmimgbackup command. Spectrum Scale file system namespace and file metadata are sent to GHI and HPSS.

 Important

 Do not change the backup_metadata policy without contacting HPSS support.

backup_error.policy
The backup error policy contains the rules that are used to validate the capture of a file system’s metadata.

 Important

 Do not change the backup_error policy without contacting HPSS support.

threshold.policy
The Spectrum Scale ILM threshold policy provides the capability for GHI to space manage the Spectrum Scale file system. New and modified Spectrum Scale files are copied to HPSS on a periodic basis. When the Spectrum Scale file system reaches a predefined space threshold, the Spectrum Scale ILM threshold policy is executed to identify file candidates whose data can be removed from the file system. This file must be copied from the /var/hpss/ghi/policy directory to /var/hpss/ghi/policy/<file system> and modified to be specific to the file system. The script ghi_migrate is invoked from the policy engine and requires a "-p" option to punch holes in the file system.
Chapter 6. Backup and restore

6.1. Backups

To back up a Spectrum Scale file system, use the GHI `ghi_backup` command line interface. The backup interface uses the Spectrum Scale `mmimgbackup` command, which uses the ILM policy management engine.

GHI backups use the Spectrum Scale snapshot feature to take a point-in-time image of the file system. When running a backup:

1. A snapshot of the Spectrum Scale namespace is saved after the backup migration policy and any other running migration policies have completed.

2. The state of each of the files is saved.

Each file system to be backed up uses its own copy of each of the following backup policy templates that reside in the `/var/hpss/ghi/policy` directory:

`backup_migration.policy`

The backup migration policy contains the migration rules for the Spectrum Scale file system to be backed up. The rules can migrate files as aggregates or non-aggregates. The rules must select all the files to be backed up.

`backup_metadata.policy`

The backup metadata policy contains the rules that previous GHI versions need to capture a file system’s metadata. The new image backup feature does not require a metadata policy for metadata backup. The metadata is contained in the image generated by Spectrum Scale as part of the backup process.

`backup_error.policy`

The backup error policy contains the rules that are used to validate the capture of the file system’s metadata.

Note

IBM recommends running a daily backup. Checking the backup logs daily to correct any errors is a good practice to ensure successful backups. The GHI backup option is "image". Full non-image backup is deprecated. Details of backup are provided in the *GHI Management Guide*.

Most sites create a crontab entry using either of the following forms of `ghi_backup` to run a daily backup. For purposes of this documentation, each command below has been split into two separate lines; each indented line should be considered as part of the command line above it, with no breaks.

```
ghi_backup <filesys> <type> [--keep-snapshot] [-E <Fsets> [-U <mmapplypolicy_user_args>]] [-I <mmimgbackup_user_args>]]
```
ghi_backup <filesys> <type> [--keep-snapshot] [-E -F <List of Fsets> [-U
<mmapplypolicy_user_args>] [-I <mmimgbackup_user_args>]]

Where:

<type>
Perform the indicated type of backup. Presently, the only value accepted for this field is "image", which means an image backup using the Spectrum Scale SOBAR capability.

--keep-snapshot
Keep the Spectrum Scale snapshot that is taken during backup.

<Fsets>
Filesets which need not be linked in; either a space-separated list of filesets, or (using -F) a space-separated list of files containing a list of filesets.

<mmapplypolicy_user_args>
Arguments to be passed into mmapplypolicy only.

Example command:

% ghi_backup firefly image

6.2. Restore

Refer to "Backup and recovery" in the GHI Management Guide for restore details.
Chapter 7. GHI conversions

Note
Make sure that for any version you upgrade to, you read through all the instructions from the version you are upgrading from up until the version you are installing.

7.1. Converting from 3.1.0 to 3.2.0

Note
The conversion process will use RPMs for GHI 3.2.0.

1. Modify the callback script to source the database profile on all GHI nodes. (DB2PROF)

 % vim /opt/ghi/bin/hpssEventNotify

7.2. Converting from 3.0.1 to 3.1.0

Note
The conversion process will use RPMs for GHI 3.1.0.

1. Shut down GHI.

 % ghishutdown -g

2. Verify there are no non-IOM GHI processes in the process list.

 % ps -ef | grep ghi | grep -v ghi_iom

 Note
 If any GHI processes remain in the list, use kill -9 <pid> to shut them down.

3. Unmount the file system.

 % mmumount <file system> -a

4. Remove old GHI RPMs.

 % rpm -qa | grep ghi - List installed RPMs
 % rpm -e <ghi_rpms installed from above>
 % rpm -qa | grep ghi - Verify no GHI RPMs are installed

5. Install new GHI 3.1.0 RPMs.

 Note
 RPMs deployed will vary. Contact HPSS support before installing.

 % cd <path to GHI 3.1.0 RPMs>
6. Run `ghiupdate` twice: first with the `-vT` option to test, and then again with just the `-v` option.

   ```
   % ghiupdate -vT --<OS arch> <all nodes listed in ghilsnodes>
   % ghiupdate -v --<OS arch> <all nodes listed in ghilsnodes>
   ```

7. Make sure the directory where GHI is installed is linked to `/opt/ghi`.

8. Delete and recreate the `mmcallbacks` so they use the `/opt/ghi/bin` path. For example, if the `mmcallbacks` are:

   ```
   % mmlscallback
   hpssCBstartup
       command = /opt/hpss/bin/hpssEventNotify
       event = startup,clusterManagerTakeover,preShutdown
       parms = %clusterName %eventName %clusterManager.ip %myNode.ip
   hpssCBthreshold
       command = /opt/hpss/bin/hpssCBthreshold
       event = noDiskSpace,lowDiskSpace
       parms = %eventName %fsName
   ```

 You should do the following to re-add the callbacks for the `/opt/ghi` directory:

 a. Delete the callbacks with:

      ```
      % mmdelcallback hpssCBstartup
      % mmdelcallback hpssCBthreshold
      ```

 b. Add them back for `/opt/ghi` with the following. For purposes of this documentation, the `mmaddcallback` commands below have been split into multiple lines; the indented lines should be considered as part of the starting command line, with no breaks.

      ```
      % mmaddcallback hpssCBstartup --command /opt/ghi/bin/hpssEventNotify --event startup,clusterManagerTakeover,preShutdown --parms "%clusterName %eventName %clusterManager.ip %myNode.ip"
      % mmaddcallback hpssCBthreshold --command /opt/ghi/bin/hpssCBthreshold --event noDiskSpace,lowDiskSpace --parms "%eventName %fsName"
      ```

9. Delete and re-add the IOMs so they are configured for the new location under the `/opt/ghi` directory. The following instructions can help achieve this:

 a. Start GHI.

 b. List all IOMs.

      ```
      % ghilsiom <file system>
      ```

 You can use this to see the current IOM configuration info.

 c. Delete all IOMs.

      ```
      % ghideliom <file system> <IOM node>:<port #>
      ```
Use this on each IOM node you want recreated on the file system.

d. Add all IOMs.

```bash
% ghiaddiom <file system> <IOM node>:<port #> <asn value> <etr value> <chunk size>
```

Where:

- `<asn value>`
 the value indicated earlier for the "Active Session Node" in the `ghilsiom` output.

- `<etr value>`
 the value indicated earlier for the "Estimated Transfer Rate" in the `ghilsiom` output.

- `<chunk size>`
 the value indicated earlier for the "Transfer Chunk Size" in the `ghilsiom` output.

Repeat the above for each IOM and port in `ghilsiom`.

10. Restart GHI.

```bash
% ghishutdown -g
% ghistartup -g
```

11. The new IOM should be usable and you can confirm the change by running `ghilsiom <file system>`.

12. You may wish to update your path to include `/opt/ghi/bin` so that the GHI executables can be found without specifying the path.

13. The files installed by the GHI RPM that specify GHI paths will use `/opt/ghi` instead of `/opt/hpss`. However, for any policy files containing GHI paths that already exist on the system that are not replaced by the GHI RPM, these will need to be updated so paths containing `/opt/hpss` are changed to `/opt/ghi`.

14. Old libraries must be removed.

As part of upgrading to versions of GHI 3.1.0 or later from GHI 3.0.1 or earlier, sites should remove the GHI files from the HPSS directory. These include the `ghi*` files under `/opt/hpss/bin` and `/opt/hpss/lib`, but also these files under `/opt/hpss/lib`:

- `HPSSModule.so`
- `libhpssghi.so`
- `libhpssghi_base.so`

Note

GHI will attempt to create a link in `libhpssghi_restore.so` in `/opt/hpss/lib`. Spectrum Scale continues to link with that location for handling image restores. The `libhpssghi_restore.so` file should be removed.

and these files under `/opt/hpss/bin`:
15. Policy files must be updated to reflect the new install location.

Also, customers will have to update all policy files on all their nodes manually to reflect /opt/ghi/bin instead of /opt/hpss/bin. Until this is done, migrations, recalls, and stages will not work.

7.3. Converting from 3.0.0 to 3.0.1

Note

The conversion process will use RPMs for GHI 3.0.1.

1. Shut down GHI.

 % ghishutdown -g

2. Verify there are no non-IOM GHI processes in the process list.

 % ps -ef | grep ghi | grep -v ghi_iom

 Note

 If any GHI processes remain in the list, use **kill -9 <pid>** to shut them down.

3. Unmount the file system.

 % mmumount <file system> -a

4. Remove old GHI RPMs.

 % rpm -qa | grep ghi - List installed RPMs
 % rpm -e <ghi_rpm installed from above>
 % rpm -qa | grep ghi - Verify no GHI RPMs are installed

5. Install new GHI 3.0.1 RPMs.

 Note

 RPMs deployed will vary. Contact HPSS support before installing.

For purposes of this documentation, the **rpm** command below has been split into two separate lines; the indented line should be considered as part of the command line above it, with no breaks.
GHI conversions

% cd <path to GHI 3.0.1 RPMs>
% rpm -ivh ghi-3.0.1.0-0.<arch>, ghi-lib-3.0.1.0-0.<arch>,
ggi-ishtar-5.1.2.0-0.<arch>

6. Run `ghiupdate` twice: first with the `-vT` option to test, and then again with just the `-v` option.

% ghiupdate -vT --<OS arch> <all nodes listed in ghilsnodes>
% ghiupdate -v --<OS arch> <all nodes listed in ghilsnodes>

7. Convert the GHI garbage collection table on each file system. This step should be run for all file systems; the conversion of file system tables can be executed in parallel.

a. For each file system, modify `/var/hpss/ghi/templates/ghimodifygc.ddl` by replacing the template info (`<GC_FILESYSTEM>`) with your file system name throughout the file (for example, if your file system name is "foo", the table name should be "GC_FOO").

% cat /var/hpss/ghi/templates/ghimodifygc.ddl

connect to hghi;
ALTER TABLE HPSS."GC_FOO_FS1"
ADD COLUMN INODE
BIGINT NOT NULL DEFAULT 0
ADD COLUMN IGEN
INTEGER NOT NULL DEFAULT 0;
reorg table HPSS."GC_CANAAN_FS1";

b. Run the modified `ghimodifygc.ddl`.

% db2 -svtf ghimodifygc.ddl

8. Start the new GHI.

% ghistartup -g

9. Verify that the ghi_pm, ghi_cm, and ghi_md processes are running.

% ps -ef | grep ghi_ | grep -v grep

10. Mount GHI-managed file systems.

% mmmount <file system> -a

11. Verify the SD, ED, and then the IOMs are active.

% tail /<file system>/scratch/mon/<mon_sd.out | mon_iom.out>

12. Convert the DMAPI PIN attributes into timestamp values for all file systems.

Note

The pin conversion process converts DMAPI PIN attributes into timestamp values for all file systems. If Spectrum Scale is restored using a backup prior to this conversion, the unconverted DMAPI PIN attributes will be restored as well, and it will be necessary to rerun these steps to convert the PIN attribute values again.
GHI conversions

a. List all pinned files using the following policy:

```bash
# Template for listing old style pinned files
RULE EXTERNAL POOL 'hsm' EXEC '/opt/hpss/bin/ghi_migrate'

RULE 'Pinned Files' LIST 'files_pinned'
  SHOW ('-s' FILE_SIZE)
  WHERE XATTR('dmapi._GHI_PIN') LIKE 'TRUE%
  AND path_name NOT LIKE '%/%scratch%
  AND path_name NOT LIKE '%/.snapshot%

RULE 'Default' SET POOL 'system'
```

b. Apply the above policy.

```bash
% ghiapplypolicy <file system> -P <above template file> -I defer
```

c. Generate a file list for all pinned files and convert them.

```bash
% cat <path/to/scratch/.ghi>/list.files_pinned | cut -d' ' -f7 > /tmp/pinned_files
% ghi_pin -f /tmp/pinned_files
```

d. Generate a file list for all unpinned files (files which were previously pinned, but were later unpinned using the `ghi_pin` tool) and convert them. For purposes of this documentation, the `cat` command below has been split into two separate lines; the indented line should be considered as part of the command line above it, with no breaks.

```bash
% cat <path/to/scratch/.ghi>/list.files_unpinned | cut -d' ' -f7 > /tmp/unpinned_files
% ghi_pin -u -f /tmp/unpinned_files
```

e. Validate that all attributes have been migrated by listing the pinned files and comparing row counts: they should match. If not, list the pinned files again and rerun the `ghi_pin` tool against the resulting list. For purposes of this documentation, the `wc` command below has been split into two separate lines; the indented line should be considered as part of the command line above it, with no breaks.

```bash
% ghiapplypolicy -P /var/hpss/ghi/policy/pin_time_list.policy -I defer
% wc -l <path/to/scratch/.ghi>/list.files_pinned
  <path/to/scratch/.ghi>/list.files_pinned_time
1000 <path/to/scratch/.ghi>/list.files_pinned
1000 <path/to/scratch/.ghi>/list.files_pinned_time
```
Note

It could take up to ten minutes for the ED to connect to the SD and fifteen minutes for the IOMs to connect to the ED. If after twenty minutes things are still not connecting, contact HPSS support.

7.4. Converting from 3.1 to 3.2

Note

The conversion process will use RPMs for GHI 3.2.

1. Shut down GHI.

 `% ghishutdown -g`

2. Verify there are no non-IOM GHI processes in the process list.

 `% ps -ef | grep ghi | grep -v ghi_iom`

 Note

 If any GHI processes remain in the list, use `kill -9 <pid>` to shut them down.

3. Unmount the file system.

 `% mmumount <file system> -a`

4. Remove old GHI RPMs.

 `% rpm -qa | grep ghi - List installed RPMs`
 `% rpm -e <ghi_rpms installed from above>`
 `% rpm -qa | grep ghi - Verify no GHI RPMs are installed`

5. Install new GHI 3.2 RPMs on all session nodes. Install new GHI 3.2 IOM RPMs on all IOM nodes.

 Note

 RPMs deployed will vary. Contact HPSS support before installing.

 `% cd <path to GHI 3.2 RPMs>`
 `% rpm -ivh ghi-3.2.0.0-0.<arch> ghi-lib-3.2.0.0-0.<arch> ghi-ishtar-5.1.2.0-0.<arch>`

6. Run `ghiupdate` twice: first with the `-vT` option to test, and then again with just the `-v` option.

 `% ghiupdate -vT --<OS arch> <all nodes listed in ghilsnodes>`
 `% ghiupdate -v --<OS arch> <all nodes listed in ghilsnodes>`

7. Create indexes on the GHI mapping tables for each file system. These steps should be run for all file systems; the conversion of the system tables can be executed in parallel.

 a. For each file system, source the Db2 profile.

 `% source <hpssdb user home>/sql/lib/db2profile`
b. Create the HPSS path index.

```
% db2 "CREATE INDEX HPSSIDX ON MAPPING_<FS>_BASE (HPSSPATH)"
```

c. Create the Spectrum Scale path index.

```
% db2 "CREATE INDEX GPFSIDX ON MAPPING_<FS>_BASE (GPFSBASEPATH)"
```

d. Create the Inode index.

```
% db2 "CREATE INDEX INODEIDX ON MAPPING_<FS>_BASE (INODE)"
```

e. Update statistics in the system catalog for the GHI mapping base table.

```
% db2 "RUNSTATS ON TABLE MAPPING_<FS>_BASE AND SAMPLE DETAILED INDEXES ALL"
```

f. Remove any cached SQL statements.

```
% db2 "FLUSH PACKAGE CACHE DYNAMIC"
```

g. Check if the mapping table needs to be reorganized.

```
% db2 "REORGCHK CURRENT STATISTICS ON TABLE MAPPING_<FS>_BASE"
```

8. Create a new index on the GHI garbage collection table for each file system. This step should be run for all file systems; the conversion of the system tables can be executed in parallel.

a. For each file system, source the Db2 profile.

```
% source <hpssdb user home>/sqllib/db2profile
```

b. Create the SOID Index for the GC table.

```
% db2 "CREATE INDEX GC_<FS>_SOID_INDEX ON GC_<FS> (SOID)"
```

9. Start the new GHI.

```
% ghistartup -g
```

10. Verify that the ghi_pm, ghi_cm, and ghi_md processes are running.

```
% ps -ef | grep ghi_ | grep -v grep
```

11. Mount GHI-managed file systems.

```
% mmmount <file system> -a
```

AND path_name NOT LIKE '/%/.snapshot%'
RULE 'Default' SET POOL 'system'

a. Generate a file list for all unpinned files (files which were previously pinned, but were later unpinned using the **ghi_pin** tool) and convert them. For purposes of this documentation, the **cat** command below has been split into two separate lines; the indented line should be considered as part of the command line above it, with no breaks.

```
% cat <path/to/scratch/.ghi>/list.files_unpinned | cut -d' ' -f7 >
```
b. Validate that all attributes have been migrated by listing the pinned files and comparing row counts: they should match. If not, list the pinned files again and rerun the `ghi_pin` tool against the resulting list. For purposes of this documentation, the `wc` command below has been split into two separate lines; the indented line should be considered as part of the command line above it, with no breaks.

```bash
% ghi_pin -u -f /tmp/unpinned_files
% ghiapplypolicy -P /var/hpss/ghi/policy/pin_time_list.policy -I defer
% wc -l <path/to/scratch/.ghi>/list.files_pinned
 1000 <path/to/scratch/.ghi>/list.files_pinned_time
1000 <path/to/scratch/.ghi>/list.files_pinned_time
```

Note

It could take up to ten minutes for the ED to connect to the SD and fifteen minutes for the IOMs to connect to the ED. If after twenty minutes things are still not connecting, contact HPSS support.
Appendix A. Glossary of terms and acronyms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL</td>
<td>Access Control List.</td>
</tr>
<tr>
<td>AIX</td>
<td>Advanced Interactive Executive. An operating system provided on many IBM machines.</td>
</tr>
<tr>
<td>API</td>
<td>Application Program Interface.</td>
</tr>
<tr>
<td>Archive</td>
<td>One or more interconnected storage systems of the same architecture.</td>
</tr>
<tr>
<td>Attribute</td>
<td>When referring to a managed object, an attribute is one discrete piece of information, or set of related information, within that object.</td>
</tr>
<tr>
<td>Class of Service</td>
<td>A set of storage system characteristics used to group files with similar logical characteristics and performance requirements together. A Class of Service is supported by an underlying hierarchy of storage classes.</td>
</tr>
<tr>
<td>CM</td>
<td>Configuration Manager</td>
</tr>
<tr>
<td>Co-managed</td>
<td>File data resides in both Spectrum Scale and HPSS.</td>
</tr>
<tr>
<td>Configuration</td>
<td>The process of initializing or modifying various parameters affecting the behavior of a GHI server or infrastructure service.</td>
</tr>
<tr>
<td>COS</td>
<td>Class of Service.</td>
</tr>
<tr>
<td>Core Server</td>
<td>An HPSS server which manages the namespace and storage for an HPSS system. The Core Server manages the namespace in which files are defined, the attributes of the files, and the storage media on which the files are stored. The Core Server is the central server of an HPSS system. Each storage subsystem uses exactly one Core Server.</td>
</tr>
<tr>
<td>Daemon</td>
<td>A UNIX program that runs continuously in the background.</td>
</tr>
<tr>
<td>Db2</td>
<td>A relational database system, a product of IBM Corporation, used by HPSS and GHI to store and manage HPSS and GHI metadata.</td>
</tr>
<tr>
<td>Directory</td>
<td>An HPSS object that can contain files, symbolic links, hard links, and other directories.</td>
</tr>
<tr>
<td>DMAPI</td>
<td>Data Management Application Programming Interface.</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Energy.</td>
</tr>
<tr>
<td>ED</td>
<td>Event Daemon.</td>
</tr>
<tr>
<td>Event</td>
<td>A log record message type used to log informational messages (for example: subsystem starting, subsystem terminating).</td>
</tr>
<tr>
<td>File</td>
<td>An object that can be written to, read from, or both, with attributes including access permissions and type, as defined by POSIX (P1003.1-1990). HPSS supports only regular files.</td>
</tr>
<tr>
<td>Fileset</td>
<td>A collection of related files that are organized into a single easily managed unit. A fileset is a disjoint directory tree that can be mounted in some other directory tree to make it accessible to users.</td>
</tr>
<tr>
<td>File system ID</td>
<td>A 32-bit number that uniquely identifies an aggregate.</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>FSID</td>
<td>File system unique identifier.</td>
</tr>
<tr>
<td>GB</td>
<td>Gigabyte (2^{30}).</td>
</tr>
<tr>
<td>GC</td>
<td>Garbage Collection.</td>
</tr>
<tr>
<td>GHI</td>
<td>Spectrum Scale/HPSS Interface.</td>
</tr>
<tr>
<td>ISHTAR</td>
<td>Specially modified GHI-specific version of the HTAR program.</td>
</tr>
<tr>
<td>HA</td>
<td>High Availability</td>
</tr>
<tr>
<td>Hierarchy</td>
<td>See "Storage Hierarchy".</td>
</tr>
<tr>
<td>HPSS</td>
<td>High Performance Storage System.</td>
</tr>
<tr>
<td>HSI</td>
<td>Hierarchical Storage Interface.</td>
</tr>
<tr>
<td>HSM</td>
<td>Hierarchical Storage Management</td>
</tr>
<tr>
<td>ISHTAR</td>
<td>HPSS tar program – a utility to aggregate a set of files directly into HPSS without first writing to local storage, and to randomly retrieve individual member files via creation of a separate index file.</td>
</tr>
<tr>
<td>IBM</td>
<td>International Business Machines Corporation.</td>
</tr>
<tr>
<td>ID</td>
<td>Identifier.</td>
</tr>
<tr>
<td>ILM</td>
<td>Information lifecycle Management.</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output.</td>
</tr>
<tr>
<td>IOM</td>
<td>I/O Manager.</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol.</td>
</tr>
<tr>
<td>KB</td>
<td>Kilobyte (2^{10}).</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network.</td>
</tr>
<tr>
<td>LANL</td>
<td>Los Alamos National Laboratory.</td>
</tr>
<tr>
<td>LLNL</td>
<td>Lawrence Livermore National Laboratory.</td>
</tr>
<tr>
<td>MB</td>
<td>Megabyte (2^{20}).</td>
</tr>
<tr>
<td>MD</td>
<td>Mount Daemon.</td>
</tr>
<tr>
<td>metadata</td>
<td>Control information about the data stored under HPSS, such as location, access times, permissions, and storage policies. Most HPSS metafile contents are stored in a Db2 relational database.</td>
</tr>
<tr>
<td>Migrate</td>
<td>To copy file data from a level in the file’s hierarchy onto the next lower level in the hierarchy.</td>
</tr>
<tr>
<td>Mount</td>
<td>An operation in which a cartridge is either physically or logically made readable or writable, or both, on a drive. In the case of tape cartridges, a mount operation is a physical operation. In the case of a fixed disk unit, a mount is a logical operation.</td>
</tr>
<tr>
<td>Mount point</td>
<td>A place where a fileset is mounted in the XFS or HPSS namespaces, or both.</td>
</tr>
<tr>
<td>Mover</td>
<td>An HPSS server that provides control of storage devices and data transfers within HPSS.</td>
</tr>
<tr>
<td>Namespace</td>
<td>The set of name-object pairs managed by the HPSS Core Server.</td>
</tr>
<tr>
<td>PB</td>
<td>Petabyte (2^{50}).</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>PID</td>
<td>Process identifier</td>
</tr>
<tr>
<td>PM</td>
<td>Process Manager.</td>
</tr>
<tr>
<td>POSIX</td>
<td>Portable Operating System Interface (for computer environments).</td>
</tr>
<tr>
<td>RPM</td>
<td>RPM Package Manager</td>
</tr>
<tr>
<td>SD</td>
<td>Scheduler Daemon.</td>
</tr>
<tr>
<td>SNL</td>
<td>Sandia National Laboratories.</td>
</tr>
<tr>
<td>SOID</td>
<td>Storage Object Identifier</td>
</tr>
<tr>
<td>Spectrum</td>
<td>New name of General Parallel File System (GPFS).</td>
</tr>
<tr>
<td>Scale</td>
<td></td>
</tr>
<tr>
<td>SQL</td>
<td>Structured Query Language</td>
</tr>
<tr>
<td>SSH</td>
<td>Secure Shell Protocol</td>
</tr>
<tr>
<td>Storage class</td>
<td>An HPSS object used to group storage media together to provide storage for HPSS data with specific characteristics. The characteristics are both physical and logical.</td>
</tr>
<tr>
<td>Storage hierarchy</td>
<td>An ordered collection of storage classes. The hierarchy consists of a fixed number of storage levels numbered from level 1 to the number of levels in the hierarchy, with the maximum level being limited to 5 by HPSS. Each level is associated with a specific storage class. Migration and stage commands result in data being copied between different storage levels in the hierarchy. Each Class of Service has an associated hierarchy.</td>
</tr>
<tr>
<td>Storage subsystem</td>
<td>A portion of the HPSS namespace that is managed by an independent Core Server and (optionally) the Migration/Purge Server.</td>
</tr>
<tr>
<td>TB</td>
<td>Terabyte (2^{40}).</td>
</tr>
</tbody>
</table>